If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+20x+0.5=0
a = -16; b = 20; c = +0.5;
Δ = b2-4ac
Δ = 202-4·(-16)·0.5
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{3}}{2*-16}=\frac{-20-12\sqrt{3}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{3}}{2*-16}=\frac{-20+12\sqrt{3}}{-32} $
| -16x^2+28x+5=0 | | 3x-28=-55 | | X-60+x=640 | | -16x^2+19x+7.5=0 | | X+79+x=1029 | | Y=-7+15.x=3 | | 4/5=12/3x | | 2.5(x+3)=4x | | (9x-14)+(7x+18)=180 | | (7x+2)+(6x+7)=180 | | 0.25(2-x)+1.5=3(x-2) | | -49=y-9 | | a=(10)^2=3.14/2 | | (3x+4/3)+(x/5)=2 | | 46+14x-22=360 | | 9-5v=51 | | -4y+7=2y+11 | | 162=117-w | | 2e=5(2^2)+16 | | 2/9h=-8 | | 6p+7p=11+2p | | b+5=-8+2b-7+4b | | 15x-60=35x-30 | | -9+5p+p=3p+6 | | 11+7p=8p+8 | | 2h/25=20 | | 12x^2+14x-40=0 | | 2/1/2n+3/1/2-1/3/4=4/1/4 | | C(x)=x^2-220x+20277 | | 4=2x+2x+12 | | -5u+3u-12=-10 | | 8w+40-6w=26 |